ABOUT JEN

The Journal of Entomology and Nematology (JEN) (ISSN: 2006-9855) is published monthly (one volume per year) by Academic Journals.

Journal of Entomology and Nematology (JEN) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as applications of entomology in solving crimes, taxonomy and control of insects and arachnids, changes in the spectrum of mosquito-borne diseases etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JEN are peer-reviewed.

Contact Us

Editorial Office: jen@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JEN
Submit manuscript online http://ms.academicjournals.me/
Editor

Prof. Mukesh K. Dhillon
ICRISAT
GT-Biotechnology, ICRISAT, Patancheru 502 324, Andhra Pradesh, India

Dr. Lotfalizadeh Hosseinali
Department of Insect Taxonomy
Iranian Research Institute of Plant Protection
Tehran, P. O. B. 19395-1454, Iran

Prof. Liande Wang
Faculty of Plant Protection,
Fujian Agriculture and Forestry University
Fuzhou, 350002, P.R. China

Dr. Raul Neghina
Victor Babes University of Medicine and Pharmacy
Timisoara, Romania

Prof. Fukai Bao
Kunming Medical University
191 Western Renmin Road, Kunming, Yunnan, PR of China

Dr. Anil Kumar Dubey
Department of Entomology,
National Taiwan University, Sec. 4, Lane 119, Taipei, Taiwan 107

Dr. Mona Ahmed Hussein
National Research Centre, Centre of Excellence for Advanced Sciences, El-Behooth Street, Dokki, Cairo, Egypt

Associate Editors

Dr. Sam Manohar Das
Dept. of PG studies and Research Centre in Zoology,
Scott Christian College (Autonomous), Nagercoil – 629 003, Kanyakumari District, India

Dr. Leonardo Gomes
UNESP

Dr. J. Stanley
Vivekananda Institute of Hill Agriculture
Indian Council of Agricultural Research, Almora–263601, Uttarakhand, India

Dr. Ramesh Kumar Jain
Indian Council of Agricultural Research,
Division of Nematology, IARI
New Delhi-110012 India

Dr. Hasan Celal Akgul
Istanbul Plant Quarantine Service, Nematology Laboratory
Halkali Merkez Mahallesi, Halkali Caddesi, No:2, 34140 Halkali, Kucukcekmece-Istanbul Turkey

Dr. James E. Cilek
Florida A & M University
4000 Frankford Avenue, Panama City, Florida 32405 USA

Dr. Khan Matiyar Rahaman
Bidhan Chandra Krishi Viswavidyalaya
AICRP (Nematode), Directorate of Research, BCKV, PO. Kalyani, Dist. Nadia, PIN-741235, West Bengal, India

Manas Sarkar
Defence Research Laboratory (DRDO, Ministry of Defence, Govt. of India)
Post Bag No.2, Tezpur-784001, Assam, India
Mehdi Esfandiari
Department of Plant Protection
College of Agriculture,
Shahid Chamran University of Ahvaz,
Ahvaz, Iran

Prof. Dr. Mahfouz M. M. Abd-Elgawad
Nematology Laboratory
Department of Phytopathology
National Research Center El-Tahrir St., Dokki 12622,
Giza,
Egypt

Matthew S. Lehnert
Department of Entomology, Soils, & Plant Sciences
Clemson University, Clemson,
United States

Wenjing Pang
3318 SE 23rd Avenue
Gainesville, FL 32641
Agronomy and Biotechnological College,
China Agricultural University, Beijing,
China

Dr. G. Shyam Prasad
Directorate of Sorghum Research (DSR),
Rajendranagar, Hyderabad 500030, AP,
India

Dr. Rashid Mumtaz
Date Palm Research
Plant Protection Department
Food & Agricultural Sciences
King Saud University, Riyadh
Kingdom of Saudi Arabia

Editorial Board

Godwin Fuseini
International SOS Ghana,
Newmont Ghana Gold,
Ahafo mine,
Ghana.

Dr. Waqas Wakil
Department of Agriculture Entomology,
University of Agriculture, Faisalabad,
Pakistan

Gilberto Santos Andrade
Universidade Federal de Viçosa
Avenida Peter Henry Rolfs, s/n Campus Universitário
36570-000
Viçosa - MG - Brazil

Ricardo Botero Trujillo
Calle 117 D # 58-50 apto. 515
Pontificia Universidad Javeriana, Bogotá,
Colombia

Dr. D. N. Kambrekar
Regional Agricultural Research Station,
UAS Campus, PB. No. 18,
Bijapur-586 101 Karnataka-INDIA
India

Dr. P. Pretheep Kumar
Department of Forest Biology
Forest College & Research Institute
Tamil Nadu Agricultural University
Mettupalayam – 641 301
Tamil Nadu, India

Dr. Raman Chandrasekar
College of Agriculture Entomology
S-225, Agriculture Science Center
University of Kentucky
Lexington, KY 40546-0091
USA.

Dr. Rajesh Kumar
Central Muga Eri Research and Training Institute
Lahdoigah, Jorhat-785700, Assam,
India
T. Ramasubramanian
Central Research Institute for Jute and Allied Fibres
(Indian Council of Agricultural Research)
Barrackpore, Kolkata – 700 120,
India

Leonardo Gomes
UNESP Av. 24A, n 1515, Depto de Biologia,
IB, Zip Code: 13506-900, Rio Claro,
SP, Brazil.

Hasan Celal Akgul
Istanbul Plant Quarantine Service,
Nematology Laboratory
Halkali Merkez Mahallesı,
Halkali Caddesi, No:2, 34140 Halkali,
Kucukcekmece-Istanbul/Turkey

J. Stanley
Vivekananda Institute of Hill Agriculture
Indian Council of Agricultural Research,
Almora– 263601, Uttarakhand, India

Atef Sayed Abdel-Razek
National Research Centre,
Dept. of Plant Protection
El-Tahrir Street, Dokki, Cairo, Egypt
Screen house management of *Meloidogyne javanica* (Treub) in UC82B
Tomato (*Solanum lycopersicum*) with leaf extract of *Jatropha curcas*

Solomon Ifeayoluchi Ogwulumba and Ijeoma Constance Ogwulumba
Full Length Research Paper

Screen house management of *Meloidogyne javanica* (Treub) in UC82B Tomato (*Solanum lycopersicum*) with leaf extract of *Jatropha curcas*

Solomon Ifeayoluchi Ogwulumba* and Ijeoma Constance Ogwulumba

Federal College of Agriculture Ishiagu, Ebonyi State, Nigeria.

Received 29 September 2016, Accepted 14 December, 2016.

Screen house experiment to determine the effect of the aqueous leaf extract of *Jatropha* on the control of *Meloidogyne javanica* infections on tomato (*Solanum lycopersicum*) was conducted at Federal College of Agriculture, Ishiagu in, 2016. UC82B tomato was used as the test crop. The test crop was planted in pots filled with 5 kg sterilized soil. Each pot was inoculated with 3000 *M. javanica* eggs collected from the infected roots of *begonia* plant. The aqueous extract was used at three concentrations of 150, 300 and 450 g/l and applied to each pot with water as the control. The parameters evaluated were plant height (cm) and number of leaves at 50% anthesis, stem girth (cm), fruit weight (kg), number of galled roots and root gall index at harvest. The leaf extracts increased significantly (P<0.05) the plant height, number of leaves, stem girth and the fruit weight. There were significant (P<0.05) reductions in the number of galled roots and root gall indices with increase in the concentrations of the leaf extract. The extract at 450 g/l showed better potential in the control of *M. javanica* infections on tomato and could therefore be recommended to tomato farmers for trial under field conditions.

Key words: Inoculated, sterilized soil, test crop, galled roots.

INTRODUCTION

The commercial tomato (*Solanum lycopersicum*) belongs to the family of Solanaceae which is an important source of vegetable and desert crop. Tomato as one of the vegetable crops is very important in human nutrition. It is also grown in nearly all home gardens and large percentage of market garden (Peet, 1992). As a processed crop, it takes first rank among the vegetable crops (Kessel, 2003). Although tomato growing on a garden basis has been practiced in Nigeria for a long period of time mainly for domestic consumption such as stew, soup and vegetable salads, the commercial cultivation is a recent innovation. This crop is now being grown commercially for the production of pastes, puree, ketchups and as fruit drinks. The fruit is known to contain high level of vitamins A, B and C.

Nematodes, the farmers’ hidden enemies are interesting

*Corresponding author. E-mail: soloogwulu@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
MATERIALS AND METHODS

The experiment was conducted at the screen house of the Federal College of Agriculture, Ishiagu, Ebonyi State, Nigeria. UC82B tomato variety obtained from Seeds Company Kano was used as the test crop. Older leaves of Jatropha were collected from the college vicinity.

Nursery practices

The tomato seedlings were raised in a wooden tray measuring 1 x 2 x 0.5 m using top soil, well cured poultry droppings and river sand, in the ratio of 2:2:1 sterilized for 30 min at 90°C in an electric soil sterilizer.

Preparation of the Inoculum

An infected begonia (Begonia rexculorum) root already maintained in an inoculum bucket was used as inoculum source. The roots were washed thoroughly with distilled water, cut into pieces and put into 100 ml measuring cylinder. 0.5% sodium hypochlorite solution (household bleach) at the ratio of 1:4 water was poured into the measuring cylinder, tightly covered and was agitated vigorously for 4 min, to dissolve the gelatinous matrix thus freeing the eggs from the egg mass.

Inoculation of Nematode

The soil around each tomato stand was slightly opened in ring form of about 2 cm deep and 3 cm wide from the base of the plant, and a graduated syringe was used to collect 10 mm (mls) of the inoculums, containing estimated 3000 eggs which were inoculated to each plant for one week after transplanting.

Preparation of the Jatropha leaf extract

The leaves were sliced into smaller sizes and weighed. These were separated into 150, 300, and 450 g weights. Each weight was blended in an electric blender with 100 ml into slurry and soaked in 900 ml of distilled water. The separate mixtures (150, 300 and 450 g/l) were filtered after 12 h and applied to the pots containing tomatoes for two days after inoculation.

Design of experiment

The experimental design was a completely randomized design (CRD) with three replications. Ten of each treatment pots were used as, a replicate.

Data Collection

The following data were collected: Plant height (cm) and number of leaves at 50% flowering, stem girth (cm), weight of fruit (g) at harvest, number of galled roots and gall index at harvest. Gall index was scaled as follows: 0 = No of gall, 1 = 1 to 2 galls, 2 = 3 to 10 galls, 3 = 11 to 30 galls, 4 = 31 to 100 galls, 5 = above 100 galls.

Statistical analysis

All data collected were subjected to analysis of variance (ANOVA) using GENSTAT software and all significant means were separated using Least Significant Difference (LSD) at 5% level of probability.

RESULTS AND DISCUSSION

The various concentrations of the aqueous leaf extract of Jatropha, affected significantly (P<0.05) the plant height and the number of leaves, produced by the plants at 50% anthesis (Table 1). This indicated that, the application of the plant extracts provided conducive environment for thrive of the plants in, the treated pots. The plants in the control pots showed clear interruption of the growth abilities of the plants, due to interference by the nematodes.

Similar trend was observed on the stem girth and the weight of fruits produced by the test crop (Table 2), in the treated pots. This indicates that, both the growth and yield parameters were significantly (P<0.05) influenced by the introduction of the extract at, various concentrations. Emeasor et al. (2002) stated that, plant extracts exert toxic effects by disrupting the normal metabolic activities of the organisms. This led to enhanced physiological activities in the treated plants. The increases in the growth and yield parameters of the treated test crop were as a result of creating conducive conditions for the growth of the plants.
Table 1. Effect of *Jatropha* aqueous leaf extracts on the mean plant height (cm) and number of leaves at 50% flowering.

<table>
<thead>
<tr>
<th>Extracts (g/1)</th>
<th>Plant height (cm)</th>
<th>Number of leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.30</td>
<td>8.75</td>
</tr>
<tr>
<td>Jt 150</td>
<td>4.60</td>
<td>9.75</td>
</tr>
<tr>
<td>Jt 300</td>
<td>8.50</td>
<td>19.25</td>
</tr>
<tr>
<td>Jt 450</td>
<td>12.00</td>
<td>18.00</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>2.21</td>
<td>2.18</td>
</tr>
</tbody>
</table>

Jt = *Jatropha* aqueous leaf extract.

Table 2. Effect of *Jatropha* aqueous leaf extracts on the mean stem girth (cm), and fruit weight (g) at harvest.

<table>
<thead>
<tr>
<th>Extracts (g/1)</th>
<th>Stem height (cm)</th>
<th>Weight of fruits (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.13</td>
<td>0.11</td>
</tr>
<tr>
<td>Jt 150</td>
<td>4.08</td>
<td>0.16</td>
</tr>
<tr>
<td>Jt 300</td>
<td>5.30</td>
<td>0.19</td>
</tr>
<tr>
<td>Jt 450</td>
<td>7.40</td>
<td>0.39</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>2.34</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 3. Effect of *Jatropha* aqueous leaf extract on the number of galled roots and galls/roots plant.

<table>
<thead>
<tr>
<th>Extracts (g/1)</th>
<th>Galled roots</th>
<th>Gall index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10.50</td>
<td>4.75</td>
</tr>
<tr>
<td>Jt 150</td>
<td>6.50</td>
<td>2.00</td>
</tr>
<tr>
<td>Jt 300</td>
<td>6.75</td>
<td>1.50</td>
</tr>
<tr>
<td>Jt 450</td>
<td>3.25</td>
<td>1.13</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>1.86</td>
<td>1.87</td>
</tr>
</tbody>
</table>

The galled roots and root gall indices reduced significantly (P<0.05) with an increase in the concentrations of the extract (Table 3). Plant treated with *Jatropha* aqueous leaf extract at 450 g/l produced the least number of galled roots (3.25) with the control, significantly producing the highest number of galled roots (10.50). In the root gall index, the least root gall index was recorded as, the roots of plants treated with 450 g/l of the extract. This means that extract contains antimicrobial nutrients which are antagonistic to the nematode attack on the test crop. Non-chemical strategies had been employed in the control root knot nematode infections in tomato (Ogwulumba and Ogwulumba, 2010; Ogwulumba et al., 2011; Ugwuoke et al., 2011). Onyenobi and Achale (2008) reported the efficacies of various plant extracts in the control of root knot nematode on crops.

CONCLUSION AND RECOMMENDATION

The reduction of the number of galled roots and gall index in the treated crops, which led to enhance the growth and yield parameters of the treated crops confirmed the nematicidal quality of *Jatropha* leaf extract. It is therefore recommended that this trial should be done under field conditions, with higher doses of the extract to determine its effects in the field.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interest

REFERENCES

